
The Computational Complexity of the Housing Market∗

Edwin Lock† Zephyr Qiu‡ Alexander Teytelboym§

February 13, 2024

Abstract

We prove that the classic problem of finding a competitive equilibrium in an exchange
economy with indivisible goods, money, and unit-demand agents is PPAD-complete. In
this “housing market”, agents have preferences over the house and amount of money they
end up with, but can experience income effects. Our results contrast with the existence
of polynomial-time algorithms for related problems: Top Trading Cycles for the “housing
exchange” problem in which there are no transfers and the Hungarian algorithm for the
“housing assignment” problem in which agents’ utilities are linear in money. Along the
way, we prove that the Rainbow-KKM problem, a total search problem based on a general-
ization by Gale of the Knaster–Kuratowski–Mazurkiewicz lemma, is PPAD-complete. Our
reductions also imply bounds on the query complexity of finding competitive equilibrium.

1 Introduction

The trade of indivisible objects (e.g., houses) among unit-demand agents is one of the classic
settings in market design. If there is no divisible numéraire commodity such as money—we refer
to such an economy as a “house exchange”—then Gale’s Top Trading Cycles algorithm finds
the unique allocation in the weak core Shapley and Scarf [1974], Roth and Postlewaite [1977].
If agents’ utility functions are linear in money—we refer to such a transferable utility economy
as a “housing assignment”—then an efficient allocation can be found by a straightforward
solution (e.g., the Hungarian algorithm) to an assignment game [Koopmans and Beckmann,
1957, Shapley and Shubik, 1971]. However, both the assumptions of no transfers or of quasilinear
utility are somewhat extreme, especially when one considers real-world trade of high-value
objects such as houses. A more realistic assumption is that agents’ utilities are non-linear
in money, that is, agents experience income effects and their willingness to pay for a house
might depend on their level of wealth (i.e., amount of money or the value of their own house).
Surprisingly, a competitive equilibrium allocation always exists in such a “housing market”, a
result shown (under various assumptions) by Quinzii [1984], Gale [1984] and Svensson [1984].
But while the computational properties of the Top Trading Cycles algorithm in the house
exchange model and the Hungarian algorithm in the house assignment model have been known
for decades, nothing is known about the computational complexity of finding equilibrium in the
housing market.

In this paper, we settle the computational complexity of the housing market in a general
version introduced by Gale [1984]. In particular, we show that HousingMarket, the com-
putational problem of finding an approximate competitive equilibrium in the housing market

∗This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 949699).

†Department of Economics, University of Oxford, edwin.lock@economics.ox.ac.uk
‡ETH Zürich, zephyr.qiu.cn@gmail.com
§Department of Economics, University of Oxford, alexander.teytelboym@economics.ox.ac.uk

1

mailto:edwin.lock@economics.ox.ac.uk
mailto:zephyr.qiu.cn@gmail.com
mailto:alexander.teytelboym@economics.ox.ac.uk

model, is PPAD-complete [Papadimitriou, 1994] even when the market consists of three agents
with identical preferences. Moreover, we show that the query complexity of HousingMarket
with four or more agents is exponential in the approximation parameter. These hardness results
stand in a stark contrast to the polynomial-time complexity of Top Trading Cycles algorithm
for housing exchange and the Hungarian algorithm for housing assignment, and puts Housing-
Market in same complexity class as the computation of Arrow-Debreu equilibria [Chen et al.,
2009a] or Nash equilibria [Daskalakis et al., 2009, Chen et al., 2009b].1

We study the complexity of the housing market problem in two computational models.
In the white-box model, also known as the polynomial function model, we assume that the
preference functions of agents are given in the form of algorithms (or descriptions of Turing
machines) with polynomial running time guarantees. We work in this model to show that
HousingMarket is PPAD-complete. Secondly, we consider the black-box model (or function
oracle model) in which the preference functions of agents are given by function oracles that
can be queried to determine whether an agent demands a specific good at specific prices. The
query complexity is then defined as the number of queries needed to find a solution. Note that
the HousingMarket problem is at least as hard in the black-box model as in the white-box
model, as the latter restricts the class of preferences to those expressible with polynomial-
time functions. Moreover, the white-box model provides additional information about agent
preferences through the algorithm implementing the preference functions. In the black-box
model, we show exponential (in the approximation parameter) upper and lower bounds on the
query complexity of HousingMarket with n agents.

The complexity class PPAD captures the computational complexity of many important
problems that arise in economics and game theory. Two well-known PPAD-complete prob-
lems are Sperner and CakeCutting. Sperner is the problem of finding a panchromatic
triangle in a triangulation of a simplex or hypercube, while CakeCutting captures the com-
putational challenge of finding an envy-free allocation of a one-dimensional cake among players
with heterogeneous preferences over pieces of cake. (See Sections 4.1, 4.2 and 5.2 for formal
definitions of CakeCutting and Sperner.) To prove our main result that HousingMar-
ket is PPAD-complete, we first show that the problem is computationally equivalent to Rain-
bowKKM, the generalization of the Knaster–Kuratowski–Mazurkiewicz lemma to multiple cov-
erings due to Gale [1984]. Our polynomial-time reductions between the two problems also imply
that HousingMarket and RainbowKKM have the same query complexity in the black-box
model. We then develop polynomial-time reductions from two famous PPAD-complete prob-
lems (CakeCutting and 2D-Sperner) to RainbowKKM to establish PPAD-hardness of
RainbowKKM and HousingMarket. Our reduction from CakeCutting also establishes
lower bounds on the query complexity of RainbowKKM. Surprisingly, our reduction from 2D-
Sperner implies that HousingMarket remains PPAD-hard even when the market consists
of three agents and these agents have identical preferences. Finally, we show membership of
RainbowKKM in PPAD by reducing RainbowKKM to Sperner. This reduction uses the
technique of labeling and coloring the vertices of a triangulated simplex initially developed in
Su [1999] to provide the first computational procedure for finding an envy-free cake-cutting
solution; this technique was then refined in Deng et al. [2012] using Kuhn’s triangulation to
prove PPAD-hardness of CakeCutting. Moreover, our reduction implies an exponential up-
per bound on the query complexity of RainbowKKM, which builds on a query complexity
bound for Sperner shown in Deng et al. [2011]. Our results are summarized in Table 1, and
the main polynomial-time reductions developed in this paper are depicted in Fig. 1.

1See Part III in Rubinstein [2019] for a superb overview of PPAD and for many results about important
economic problems, such as computing an approximate Bayes-Nash equilibrium and an approximate competitive
equilibrium from equal incomes, in this class.

2

HousingMarket

CakeCutting

RainbowKKM

2D-Sperner

Sperner

Thm 3.4

Thm 3.5

Thm 4.3

Thms 4.9 & 4.10

Thm 5.7

Figure 1: Illustration of the main reductions developed in this paper. The three problems
shown in blue boxes are known to be PPAD-complete; CakeCutting was shown to be PPAD-
complete by [Deng et al., 2012, Hollender and Rubinstein, 2023], 2D-Sperner in [Chen and
Deng, 2009] and Sperner is a canonical PPAD-complete problem introduced in Papadimitriou
[1994]. Arrows denote reductions from origin to destination.

Our main result has implications for economic theory, computation and market design more
broadly, as the housing market model is a key building block in understanding competitive
equilibrium with indivisible goods in the presence of income effects [Baldwin et al., 2023].
As the ability to compute equilibrium allocations is central to practical market design, our
results suggest that more work is required to understand how to efficiently compute equilibrium
allocation when budget constraints are a salient feature of the marketplace.

This paper relates to three strands of the literature. Firstly, our results add to a growing
body of work showing the PPAD-completeness of computing equilibria in markets [Chen et al.,
2009a, Chen and Teng, 2009]. Our model, which guarantees existence of equilibrium with
indivisible goods and income effects, is conceptually related to the work of Chen et al. [2017]
which shows PPAD-hardness of solving Arrow-Debreu markets with non-monotone utilities
(over divisible goods). It is also similar in spirit (although not in techniques) to the model of
Chen et al. [2022], which studies equilibria in the classic unit-demand pseudomarket of Hylland
and Zeckhauser [1979]. However, we prove our results in Gale’s model of the housing market
which is very general and allows for externalities and non-monotonicity of utility in money. It
is an open question whether the PPAD-completeness survives with stronger assumptions on
preferences (as, e.g., in the Quinzii [1984] model).

Secondly, our reductions demonstrate parallels between CakeCutting and the Housing-
Market and RainbowKKM problems. CakeCutting was first shown to be PPAD-complete
by Deng et al. [2012] in a model with demand functions. PPAD-completeness of CakeCutting
was then extended recently to the more stringent model with utility functions by Hollender and
Rubinstein [2023]. We make use of this latter cake cutting model when we reduce CakeCut-
ting to HousingMarket. In Gale’s model of the housing market, agent preferences are also
represented by demand functions. It is an open question whether PPAD-hardness continues to
hold for HousingMarket when preferences are instead represented by utility functions.

Thirdly, our results are loosely related to a broader agenda on mechanism design with income
effects (see, e.g., Che and Gale [1998], Benoit and Krishna [2001], Bhattacharya et al. [2010],
Dobzinski et al. [2012], Saitoh and Serizawa [2008], Morimoto and Serizawa [2015], Baisa [2017]).
These papers typically consider the design of optimal mechanisms in the presence of income
effects, whereas we focus on computation of competitive equilibrium prices and allocations.

3

Complexity model n = 2 n = 3 n ≥ 4

white-box P PPAD-hard PPAD-hard
black-box O(log 1

ε) ? Θ(log(ε))

Table 1: The computational complexity (in the white-box model) and query complexity
(in the black-box model) of the HousingMarket problem with n agents (and the computa-
tionally equivalent RainbowKKM problem). The two problems lie in PPAD for all n. The
query complexity for n = 3 is unknown but expected to be Θ(log(ε)).

Organization. The rest of the paper is organised as follows. At the end of this section,
we introduce the PPAD complexity class and notation. Section 2 states the model, defines
competitive equilibrium, introduces the Rainbow-KKM lemma used by Gale [1984] to prove
the existence of competitive equilibrium in his model. In this section, we also provide ini-
tial reductions. Section 3 establishes the computational equivalence of HousingMarket and
RainbowKKM in the white-box and black-box models. In Section 4, we provide two proofs of
the PPAD-hardness of HousingMarket and RainbowKKM with different implications, and
derive a lower bound on the query complexity of the two problems. Section 5 proves member-
ship of HousingMarket and RainbowKKM in PPAD, concluding our proof that the two
problems are PPAD-complete, and gives an upper bound on the query complexity. Section 6 is
a conclusion.

The PPAD complexity class. Computational problems for which the existence of a solution
is guaranteed are called total search problems. The computational challenge is to find a solution.
Examples of total search problems include integer factorisation, computing fixed points, and
finding Nash equilibria. The class TFNP consists of all total search problems that can be solved
in non-deterministic polynomial time; in other words, correctness of a solution to the problem
can be verified in polynomial time. PPAD is the much-studied subclass of TFNP containing
all problems that admit a polynomial-time reduction to the canonical problem EndOfLine
[Papadimitriou, 1994]. For an introduction to PPAD and a definition of EndOfLine, we refer
to [Goldberg, 2011]. A problem is PPAD-hard if EndOfLine reduces to it, and PPAD-complete
if it lies in PPAD and is PPAD-hard. PPAD-hard problems are believed not to be solvable in
polynomial time. As polynomial-time reductions are transitive, we can show membership of
PPAD by reducing a problem to any other problem in PPAD, and PPAD-hardness by reducing
from any problem that is PPAD-hard. Reductions between two problems also help us relate
their query complexities.

Definition 1.1. For any two total search problems P and Q, a polynomial-time reduction from
P to Q consists of two polynomial-time computable functions f and g such that f maps any
instance x of P to an instance f(x) of Q, and g maps any solution s for f(x) to a solution g(s)
for x.

Notation. Z denotes the integers, N the positive natural numbers, and N0 the natural numbers
including 0. We write [n] := {1, . . . , n} and [n]0 := {0, 1, . . . , n}. Let ∆n−1 := conv{ei | i ∈
[n]} denote the standard (n − 1)-simplex in Rn. Throughout, the distance between two points
x,y ∈ Rn is defined using the L1 norm as ∥x− y∥1 =

∑
i∈[n] |xi − yi|. We write x ≥ y for two

vectors x and y if the inequality holds elementwise. A function f : X → Y with X,Y ⊆ Rn is
Lipschitz-continuous with constant K (or K-Lipschitz) if there exists a constant K such that
∥f(x)− f(y)∥1 ≤ K∥x− y∥1 for all x,y ∈ X.

4

2 The Housing Market and Rainbow-KKM problems

We begin by introducing the HousingMarket and RainbowKKM problems and developing
initial results.

2.1 The housing market

Consider a market with n agents [n] that are each endowed with a house. Each house is identified
with its agent, so the set of houses is [n]. The goal is to find a price for each house and an
assignment of houses to agents so that every agent receives a house they prefer at these market
prices.

The demand of each agent i ∈ [n] is expressed using n+1 preference sets P i = (P i
0, . . . , P

i
n)

that cover Rn. At market prices p ∈ Rn, agent i demands good j if p ∈ P i
j , and nothing if

p ∈ Ri
0. If the agent demands nothing, she prefers to exchange her house for money without

obtaining a new house. Note that an agent may be indifferent between multiple houses (or
between demanding nothing and demanding one or more houses) if preference sets overlap at
market prices. Gale [1984] imposes the following mild assumptions on the preference set of
every agent i ∈ [n]. Let Bn := {p ∈ Rn | p ≥ 0, pj = 0 for some j ∈ [n]} be the boundary of the
positive quadrant. For each agent i, we assume that

(i) sets P i
0, P

i
1, . . . , P

i
n are closed,

(ii) there exists some M > 0 such that p ̸∈ P i
j if pj ≥ M ,

(iii) P i
1, . . . , P

i
n cover ΣM

n−1 = {p ∈ Bn | 0 ≤ p ≤ M}.

Without loss of generality, we assumeM = 1 (re-scaling prices if necessary) and write Σn := ΣM
n .

Agents only wish to own at most one house, but otherwise the permissible preferences are
very general: they allow for externalities among objects and demand to increase in prices (i.e.,
Giffen or Veblen goods). An assignment is a permutation of [n] that maps agents to houses.
A market equilibrium consists of market prices p and an assignment π such that every agent
receives a house they demand at these prices; more formally, p ∈ P i

π(i) for every agent i ∈ [n].

An ε-equilibrium is a pair (p, π) such that p is ε-close to P i
π(i) for every agent i, i.e. there exists

pi ∈ Ri
π(i) such that ∥p − pi∥1 ≤ ε for every i ∈ [n]. Gale [1984] establishes that assumptions

(i) to (iii) guarantee the existence of market equilibrium.

Theorem 2.1 ([Gale, 1984]). Under assumptions (i) to (iii), there exists a market equilibrium.

Hence finding an (approximate) equilibrium is a total search problem. As market prices can,
in general, be irrational, we are interested in finding an ε-equilibrium for some approximation
parameter ε. Moreover, we formalise preference sets in the computational setting by associating
the preference sets P i = (P i

1, . . . , P
i
n) of each agent i ∈ [n] with a preference function f i :

Rn×[n]0 → {0, 1} so that f i(p, j) := 1 if p ∈ Ci
j and f i(p, j) := 0 otherwise. We say that a

preference function satisfies assumptions (i) to (iii) if its associated preference sets do so. This
allows us to define the computational problem as follows.

HousingMarket

Input: An approximation parameter ε ∈ (0, 14). Preference functions f1, . . . , fn satisfy-
ing assumptions (i) to (iii) for the agents [n].
Output: An ε-equilibrium (p, π).

5

We refer to the computational problem with a fixed number n of agents as n-HousingMarket.
In the black-box model, we assume that f1, . . . , fn are function oracles. In the white-box model,
f1, . . . , fn are given as polynomial-time algorithms.

In Theorem 2.2, we show that n-HousingMarket reduces in polynomial time to (n+ 1)-
HousingMarket with the same approximation parameter. Starting with a market for n
agents, the reduction adds an additional agent n+1 and corresponding house n+1. Preferences
are designed so that, for any equilibrium prices p ∈ Rn+1 of the new market, agents i ∈ [n]
demand the same houses at p in the new market as they do at (p1, . . . , pn) in the original
market. Hence the prices and allocation restricted to [n] form an equilibrium for the original
market. It is also clear from the reduction in the proof of Theorem 2.2 that the two problems
have the same query complexity.

Theorem 2.2. For any n ≥ 1, there exists a polynomial-time reduction from n-HousingMarket
to (n+ 1)-HousingMarket.

Proof. Suppose (ε, f1, . . . , fn) is an instance of n-HousingMarket associated with preference
sets P 1, . . . , Pn for n agents. We construct an instance of (n + 1)-HousingMarket with the
same approximation parameter and preference sets Q1, . . . , Qn+1 for n + 1 agents as follows.
For the first n agents i ∈ [n], we extend the old preference sets P i

j by defining

Qi
0 := Rn,

Qi
j :=

{
q ∈ Rn+1 | (q1, . . . , qn) ∈ P i

j

}
for all j ∈ [n],

Qi
n+1 :=

{
q ∈ Rn+1 | qn+1 = 0

}
.

(1)

For the last agent n+ 1, we define

Qn+1
0 := Rn,

Qn+1
j :=

{
q ∈ Rn | qj = 0 and qn+1 ≥ 3

4

}
for all j ∈ [n],

Qn+1
n+1 :=

{
q ∈ Rn | qn+1 ≤ 3

4

}
.

(2)

It is straightforward that the preference functions for (Qi
1, . . . , Q

i
n) can be constructed ef-

ficiently and make at most one call to preference function f i for (P i
1, . . . , P

i
n). We argue that

these preference sets satisfy Gale’s assumptions (i) to (iii). It is immediate that Qi
j is closed

for all i, j ∈ [n + 1], so (i) holds. Secondly, (ii) follows from the fact that P i
j also satisfies (ii)

when i, j ∈ [n], and is immediate for i = n + 1 or j = n + 1. Finally, we show that (iii) holds.
Indeed, suppose q ∈ Σn+1. If qn+1 = 0, then q ∈ Qi

n+1 for all agents i ∈ [n + 1]. If qn+1 > 0,
then qj = 0 for some other house j ∈ [n]. For agents i ∈ [n], this implies that (q1, . . . , qn) ∈ P i

k

for some k ∈ [n] and so q ∈ Qi
k, as the preference sets (P

i
1, . . . , P

i
n) satisfy (iii). For agent n+1,

we see that q ∈ Qn+1
j or q ∈ Qn+1

n+1.
Now let (q, τ) be an ε-equilibrium of the new market with n + 1 agents. By definition,

there exists qi ∈ Qi
τ(i) with ∥q − qi∥1 ≤ ε for every i ∈ [n+ 1]. We argue that τ assigns house

n + 1 to agent n + 1. Suppose not, so τ(n + 1) < n + 1 and τ(i) = n + 1 for some agent
i ∈ [n]. By construction of Qi

n+1 we have qin+1 = 0. It follows that qn+1
n+1 ≤ 2ε ≤ 1

2 . But then

qn+1 /∈ Qn+1
τ(n+1), a contradiction. Define the permutation π of [n] as the restriction of τ to [n]

and p := (q1, . . . , qn). We now show that (p, π) is an ε-equilibrium for the original market with
n agents. Let pi := (qi1, . . . , q

i
n) for each i ∈ [n]. We see that qi ∈ Qi

τ(i) implies pi ∈ P i
π(i) by

construction of Qi
j . Moreover, ∥p− pi∥1 ≤ ∥q − qi∥ ≤ ε for all i ∈ [n].

6

2.2 The KKM and RainbowKKM problems

We now introduce the KKM and Rainbow-KKM lemmas, as well as their corresponding com-
putational problems. The RainbowKKM problem will serve as our intermediary problem to
show that HousingMarket is PPAD-complete. Recall the standard (n− 1)-simplex ∆n−1 :=
conv{ei | i ∈ [n]}. For any S ⊆ [n], we let FS := conv{ei | i ∈ S} be the face of ∆n−1 spanned by
vectors ei for all i ∈ S. A KKM covering of ∆n−1 is a collection of n closed subsets C1, . . . , Cn of
Rn such that FS ⊆

⋃
i∈S Ci for every S ⊆ [n]. The Knaster-Kuratowski-Mazurkiewicz (KKM)

lemma states that every KKM covering (C1, . . . , Cn) of ∆n−1 admits a point that is contained
in all Ci, i ∈ [n]. For the proof of Theorem 2.1, Gale [1984] extends this result to families of
KKM coverings.

Lemma 2.3 ([Knaster et al., 1929]). Let (C1, . . . , Cn) be a KKM covering of ∆n−1. There
exists a point x ∈ ∆n−1 that lies in

⋂
i∈[n]Ci.

Lemma 2.4 ([Gale, 1984]). Let C1, . . . , Cn be n KKM coverings of ∆n−1. There exists a
permutation π of [n] and a point x ∈ ∆n−1 such that x ∈ Ci

π(i) for every i ∈ [n].

The proofs of Lemmas 2.3 and 2.4 do not lead to an efficient way to compute the point x in
question. Moreover, as x can be irrational, we consider the computational problems of finding an
approximate solution. To formalize KKM coverings in our computational models, we associate
a KKM covering (C1, . . . , Cn) of ∆n−1 with a KKM covering function g : Rn×[n] → {0, 1}
by defining g(x, j) := 1 if x ∈ Ci

j and gi(x, j) := 0 otherwise. This leads to the following
computational problems in which the covering functions are given as function oracles or as
polynomial-time algorithms.

KKM

Input: Approximation parameter ε ∈ (0, 14). Dimension n. KKM covering function g of
∆n−1.
Output: Point x for which ∥x− xi∥1 ≤ ε for some xi ∈ Ci for every i ∈ [n].

We say that a pair (x, π) consisting of point x ∈ ∆n−1 and permutation π of [n] is an
ε-approximate Rainbow-KKM solution if there exists xi ∈ Ci

π(i) with ∥x − xi∥1 ≤ ε for every

i ∈ [n]. We refer to the KKM problem with fixed dimension n = 3 as 3D-KKM.

RainbowKKM

Input: Approximation parameter ε ∈ (0, 14). KKM covering functions g1, . . . , gn of
∆n−1.
Output: ε-approximate Rainbow-KKM solution (x, π).

We refer to the RainbowKKM problem with fixed dimension n as n-RainbowKKM. As
we will see in Section 4.2, finding an approximate Rainbow-KKM point is at least as hard as
finding an approximate KKM point.

2.3 Sparse KKM coverings

In Section 5, we reduce RainbowKKM to the problem Sperner. In the reduction, we assume
that each KKM covering (C1, . . . , Cn) of ∆n−1 satisfies Ci ∩ F[n]\{i} = ∅ for every i ∈ [n]. We
call such a KKM covering sparse. We now argue that this is without loss of generality, as we
can reduce any RainbowKKM instance to an instance with sparse KKM coverings. Note that

7

we cannot simply make a KKM covering (C1, . . . , Cn) sparse by subtracting F[n]\{i} from Ci for
each i ∈ [n], as the resulting sets are not closed.

Suppose (C1, . . . , Cn) is a KKM covering of ∆n−1. We now construct a KKM covering
(D1, . . . , Dn) parametrised by δ > 0 that is sparse. Moreover, we will see that for every x ∈ Di

there exists a point y ∈ Ci close to x. This forms the basis of our reduction fromRainbowKKM
to the version with sparse KKM coverings.

Fix parameter δ ∈ (0, 14). First we define a projection function τ : ∆n−1 → ∆n−1. Let
τ(x) be the vector obtained from x by reducing all entries less or equal to δ down to 0, and
normalizing the remaining entries so that the entries sum to 1. We write

τ̂(x)i :=

{
0 if xi ≤ δ,

xi else,

and τ(x) = 1
∥τ̂(x)∥1 τ̂(x). Note that ∥τ(x)−x∥1 ≤ 2nδ for any x ∈ ∆n−1. We define Di for each

i ∈ [n] as
Di := {x ∈ ∆n−1 | xi ≥ δ and τ(x) ∈ Ci}. (3)

We now argue that (D1, . . . , Dn) is a sparse KKM covering of ∆n−1. To see that each Di is
closed, write Di as the union of sets DT

i := {x ∈ Di | {j ∈ [n] | xj ≤ δ} = T} for all T ⊆ [n]\{i}.
By a standard limiting argument and the fact that Ci is closed, we see that each DT

i is closed,
and so their union Di is also closed. Next, we see that (D1, . . . , Dn) satisfies the KKM covering
property. Fix S ⊆ [n] and x ∈ FS . We let S′ = {i ∈ [n] | τ(x)i > 0}, so S′ ⊆ S and τ(x) ∈ FS′ .
As (C1, . . . , Cn) is a KKM covering, τ(x) ∈

⋃
i∈S′ Ci. Fix j ∈ S′ with τ(x) ∈ Cj . Note that

τ(x)j > 0 implies τ(x)j > δ. So, by construction, τ(x) ∈ Dj . Hence τ(x) ∈
⋃

i∈S Di, which
concludes the proof that (D1, . . . , Dn) is a KKM covering. Finally, as Di contains only points
x satisfying xi ≥ δ and x ∈ D[n]\{i} implies xi = 0, we see that (D1, . . . , Dn) is sparse.

Proposition 2.5. There exists a polynomial-time reduction from n-RainbowKKM to the prob-
lem n−RainbowKKM with sparse coverings.

Proof. Suppose (ε, g1, . . . , gn) is an instance of n-RainbowKKM associated with KKM cover-
ings C1, . . . , Cn. We construct an instance (ε′ = ε

2 , h
1, . . . , hn) of n-RainbowKKM associated

with sparse KKM coverings D1, . . . , Dn that are constructed as described in (3) with parameter
δ = ε

8n . It is straightforward that hi can be implemented efficiently with at most one call to gi.
Suppose (x, π) is a solution for instance (ε′, h1, . . . , hn). Hence there exists xi ∈ Di

π(i) with

∥x − xi∥1 ≤ ε′ for every i ∈ [n]. By construction of the sets Di
j in (3), we have τ(xi) ∈ Ci

π(i).

Moreover, we know that ∥x − τ(x)∥1 ≤ 2nδ and ∥xi − τ(xi)∥1 ≤ 2nδ, so ∥τ(x) − τ(xi)∥1 ≤
ε′ + 4nδ = ε. Hence (τ(x), π) is a solution for the original instance (ε, g1, . . . , gn).

3 Reductions between HousingMarket and RainbowKKM

We now establish the computational equivalence of HousingMarket and RainbowKKM by
proving polynomial-time reductions in both directions. We note that our reductions preserve
the dimensionality of the problems; that is, an instance of n-HousingMarket is reduced to
an instance of n-RainbowKKM, and vice versa. Moreover, it follows from our reductions that
n-HousingMarket and n-RainbowKKM have the same query complexity.

In Section 3.1, we define a homeomorphism ϕ : Σn → ∆n−1 from the ‘relevant’ domain Σn of
the housing market to the domain ∆n−1 of the Rainbow-KKM problem. This homeomorphism
was first introduced by Gale [1984] to prove equilibrium existence for the housing market via
the Rainbow-KKM lemma. Section 3.2 then provides the reductions between HousingMarket
and RainbowKKM.

8

3.1 Connecting the domains of HousingMarket and RainbowKKM

Recall that Σn = {x ∈ Rn | 0 ≤ x ≤ 1, and xi = 0 for some i ∈ [n]} is the intersection of the
unit cube with the boundary of the positive orthant Bn. For each permutation π of [n], define
the two sets

Σπ := {p ∈ Σn | pπ(1) ≥ pπ(2) ≥ · · · ≥ pπ(n) = 0}
and ∆π := {x ∈ ∆n−1 | xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n)}.

It is immediate that Σn =
⋃

π Σπ and ∆n−1 =
⋃

π ∆π. For each p ∈ Σπ, we define

ϕ(p)π(k) :=
1− pπ(1)

n
+

pπ(1) − pπ(2)

n− 1
+

pπ(k−1) − pπ(k)

n− k + 1
(4)

The inverse ϕ−1 : ∆n−1 → Σn of ϕ is defined, for every x ∈ ∆π, as

ϕ−1(x)π(k) := 1− xπ(1) − xπ(2) − · · · − xπ(k−1) − (n− k + 1)xπ(k). (5)

Lemma 3.1 shows that ϕ−1 is indeed the inverse of ϕ. Moreover, Lemmas 3.2 and 3.3
prove that ϕ is n-Lipschitz and ϕ−1 is n2-Lipschitz. In particular, this establishes that ϕ is a
homeomorphism.

Lemma 3.1. The function ϕ is a bijection from Σn to ∆n−1, and ϕ−1 is its inverse. Moreover,
ϕ(∆π) = Σπ for every permutation π of [n].

Proof. It is straightforward to check that ϕ−1(ϕ(p)) = p for every p ∈ Σn and ϕ(ϕ−1(x)) = x
for every x ∈ ∆n−1, so ϕ−1 is the inverse of ϕ.

Next we show that ϕ(Σπ) = ∆π. Fix p ∈ Σπ. By construction of Σπ, we have pπ(k−1) −
pπ(k) ≥ 0 for all k ∈ {2, . . . , n}. It follows from (4) that ϕ(p)π(1) ≥ 0 and ϕ(p)π(k−1) ≤ ϕ(p)π(k)
for all k ∈ {2, . . . , n}, and∑
i∈[n]

ϕ(p)π(i) = n ·
1− pπ(1)

n
+ (n− 1) ·

pπ(1) − pπ(2)

n− 1
+ · · ·+ 1 ·

pπ(n−1) − pπ(n)

1
= 1− pπ(n) = 1.

Hence, ϕ(p) ∈ ∆π. As p was chosen arbitrarily, we get ϕ(Σπ) ⊆ ∆π. To show that ϕ(Σπ) =
∆π, we now fix x ∈ ∆π and show that ϕ−1(x) ∈ Σπ. Let p := ϕ−1(x). By (5), we have
pπ(k−1)−pπ(k) = (n−k+1)(xπ(k−1)−xπ(k)) ≤ 0, and so pπ(k−1) ≥ pπ(k), for every k ∈ {2, . . . , n}.
Moreover, x ∈ ∆π tells us that x1 ≤ 1

n and
∑

i∈[n] xπ(i) = 1. Hence, pπ(1) = 1 − nxπ(1) ∈ [0, 1]
and pπ(n) = 1−

∑
i∈[n] xπ(i) = 0.

Lemma 3.2. The function ϕ is n-Lipschitz.

Proof. In order to prove that ϕ is n-Lipschitz, we need to show ∥ϕ(p)−ϕ(q)∥1 ≤ n∥p− q∥1 for
all p, q ∈ Σn. Fix two points p, q ∈ Σn, and let ∥p − q∥1 = δ. If p and q both lie in Σπ for
some permutation π, then

|ϕ(p)π(k)−ϕ(q)π(k)| =
∑
j∈[k]

(
1

n− j + 1
− 1

n− j + 2

)
|pπ(j)−qπ(j)| ≤

∑
j∈[k]

|pπ(j)−qπ(j)| ≤ δ (6)

and so ∥ϕ(p)− ϕ(q)∥1 ≤ nδ.
From now on, we assume that p ∈ Σπ and q /∈ Σπ. Suppose first that p and q differ only in

one entry, so q = p + αeπ(j) for some j ∈ [n]. Without loss of generality, we can assume that
α > 0 (by relabeling p and q if α < 0). Note that q /∈ Σπ implies j ≥ 2. Moreover, increasing

9

pπ(j) by α moves it to the position of pπ(i) for some i < j, and moves entries pπ(i), . . . , pπ(j−1)

one position to the right. The entries of p and q in descending order are, thus, given by

pπ(1), pπ(2), . . . , pπ(i−1), pπ(i), . . . , pπ(j−1), pπ(j), pπ(j+1), . . . , pπ(n), (7)

pπ(1), pπ(2), . . . , pπ(i−1), pπ(j) + α, pπ(i), . . . , pπ(j−1), pπ(j+1), . . . , pπ(n). (8)

Observe that
pπ(j) ≤ pπ(k) ≤ pπ(j) + α, ∀k ∈ {i, . . . , j}. (9)

We will now show that |ϕ(p)π(k) − ϕ(q)π(k)| ≤ α for all k ∈ [n]. Fix some k ∈ [n] and note

ϕ(p)π(k) =
1− pπ(1)

n
+

k∑
l=2

pπ(l−1) − pπ(l)

n− l + 1
.

If k ∈ {1, . . . , i− 1}, then ϕ(p)π(k) = ϕ(q)π(k) by (7). Now suppose that k ∈ {i, . . . , j − 1}.
Then

ϕ(q)π(k) =
1− pπ(1)

n
+

i−1∑
l=2

pπ(l−1) − pπ(l)

n− l + 1

+
pπ(i−1) − (pπ(j) + α)

n− i+ 1
+

(pπ(j) + α)− pπ(i)

n− i+ 2

+
k∑

l=i+1

pπ(l−1) − pπ(l)

n− l + 2
,

and so

|ϕ(p)π(k) − ϕ(q)π(k)| =
pπ(i−1) − pπ(i)

n− i+ 1
−

pπ(i−1) − (pπ(j) + α)

n− i+ 1
−

pπ(j) + α− pπ(i)

n− i+ 2

+

k∑
l=i+1

(
1

n− i+ 1
− 1

n− i+ 2

)
(pπ(l−1) − pπ(l))

≤
(

1

n− i+ 1
− 1

n− i+ 2

)
(pπ(j) + α− pπ(i) + pπ(i) − pπ(k))

≤ pπ(j) + α− pπ(k) ≤ α.

The last inequality follows from (9). Next, suppose k = j. In this case, we have

ϕ(q)π(j) =
1− pπ(1)

n
+

i−1∑
l=2

pπ(l−1) − pπ(l)

n− l + 1
+

pπ(i−1) − (pπ(j) + α)

n− i+ 1
,

so

|ϕ(p)π(j) − π(q)π(j)| =
j∑

l=i

pπ(l−1) − pπ(l)

n− l + 1
−

pπ(i−1) − (pπ(j) + α)

n− i+ 1

=
pπ(j) + α− pπ(i)

n− i+ 1
+

j∑
l=i+1

pπ(l−1) − pπ(l)

n− l + 1

≤ pπ(j) + α− pπ(i) + pπ(i) − pπ(j) = α.

10

Now suppose that k ∈ {j + 1, . . . , n}. Hence,

ϕ(q)π(k) =
1− pπ(1)

n
+

i−1∑
l=2

pπ(l−1) − pπ(l)

n− l + 1

+
pπ(i−1) − (pπ(j) + α)

n− i+ 1
+

pπ(j) + α− pπ(i)

n− i+ 2

+

j−1∑
l=i

pπ(l−1) − pπ(l)

n− l + 1
+

pπ(j−1) − pπ(j+1)

n− j + 2

+

k∑
l=j+2

pπ(l−1) − pπ(l)

n− l + 1
.

So we have

|ϕ(p)π(k) − ϕ(q)π(k)| =
pπ(i−1) − pπ(i)

n− i+ 1
−

pπ(i−1) − pπ(j) + α

n− i+ 1
−

pπ(j) + α− pπ(i)

n− i+ 2

+

j−1∑
l=i+1

(
1

n− j + 1
− 1

n− j + 2

)
(pπ(l−1) − pπ(l))

+
pπ(j−1) − pπ(j)

n− j + 1
−

pπ(j) − pπ(j+1)

n− i+ 2
−

pπ(j−1) − pπ(j+1)

n− i+ 2

=

(
1

n− j + 1
− 1

n− j + 2

)
(pπ(j) + α− pπ(i))

+

(
1

n− j + 1
− 1

n− j + 2

)
(pπ(i) − pπ(j−1))

+

(
1

n− j + 1
− 1

n− j + 2

)
(pπ(j−1) − pπ(j))

≤ α.

Finally, suppose p and q differ in arbitrarily many entries, so q = p+
∑

i∈[n] αie
i for some

α ∈ Rn and we have δ = ∥α∥1. Define q(k) = p+
∑k

i=1 αie
i. (So q(0) = p and q(n) = q.) Then

∥ϕ(p)− ϕ(q)∥1 =

∥∥∥∥∥
n∑

i=1

ϕ(q(i−1))− ϕ(q(i))

∥∥∥∥∥
1

≤
n∑

i=1

∥∥∥ϕ(q(i−1))− ϕ(q(i))
∥∥∥
1
≤ n

n∑
i=1

|αi| ≤ nδ.

The first inequality makes use of the triangle inequality. The second inequality applies the
result from the previous paragraph to each ∥ϕ(p(i−1))−ϕ(q(i))∥1, as q(i−1) and q(i) differ in one
entry, by αi.

Lemma 3.3. The function ϕ−1 is n2-Lipschitz.

Proof. Define Rn
π = {x ∈ Rn | xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n)} for each permutation π of [n]. For

the purpose of this proof, we extend ϕ−1 to domain Rn by defining ϕ−1(x)π(k) as in (5) for every
x ∈ Rn

π. We will show that ∥ϕ−1(x) − ϕ−1(y)∥ ≤ n2∥x − y∥1 for all x,y ∈ Rn. The proof is
conceptually similar to that of Lemma 3.2. Fix x,y ∈ Rn, and define δ := ∥x − y∥1. If x and
y both lie in Rn

π for some permutation π, then, by applying the definition (5) of ϕ−1, we have

|ϕ−1(x)π(k)−ϕ−1(y)π(k)| ≤ (n−k+1)|xπ(k)−yπ(k)|+
k−1∑
i=1

|xπ(i)−yπ(i)| ≤ (n−k+1)δ+(k−1)δ = nδ,

11

so ∥ϕ−1(x)− ϕ−1(y)∥1 ≤ n2δ.
From now on, we assume that x ∈ Rn

π and y /∈ Rn
π. Suppose first that p and q differ only

in one entry, so q = p − αeπ(j) for some j ∈ [n]. Without loss of generality, assume α > 0
(relabeling p and q if necessary). Note that q /∈ Rn

π implies j ≥ 2. Decreasing entry xπ(j) by
α moves it to the position of xπ(i) for some i < j (strict inequality holds due to y /∈ Rn

π), and
moves entries xπ(i), . . . , xπ(j−1) one position to the right. The entries of y in ascending order
are, thus,

xπ(1), xπ(2), . . . , xπ(i−1), xπ(j) − α, xπ(i), . . . , xπ(j−1), xπ(j+1), . . . , xπ(n). (10)

Observe that
xπ(j) − α ≤ xπ(k) ≤ xπ(j), ∀k ∈ {i, . . . , j}. (11)

We will now show that |ϕ−1(x)π(k)−ϕ−1(y)π(k)| ≤ nα for all k ∈ [n], which implies ∥ϕ−1(x)−
ϕ−1(y)∥1 ≤ n2δ. Fix k ∈ [n] and note that

ϕ−1(x)π(k) = 1−
k−1∑
l=1

xπ(l) − (n− k + 1)xπ(k).

We distinguish between four cases. If k ∈ {1, . . . , i − 1}, then x and y coincide on en-
tries π(1), . . . , π(k), so ϕ−1(x)π(k) = ϕ(y)π(k). Secondly, suppose k ∈ {i, . . . , j − 1}. Then

ϕ−1(y)π(k) = 1−
∑k−1

l=1 xπ(l)−(xπ(j)−α)−(n−k)xπ(k), which implies |ϕ−1(x)π(k)−ϕ−1(y)π(k)| ≤
|xπ(j)−α−xπ(k)| ≤ α by (11). Thirdly, suppose k = j. Then ϕ−1(y)π(k) = 1−

∑i−1
l=1 xπ(l)−(n−

i+ 1)(xπ(j) − α), so |ϕ−1(x)π(k) − ϕ−1(y)π(k)| ≤
∣∣∣∑j−1

l=i (xπ(j) − xπ(l))− (n− i+ 1)α
∣∣∣ ≤ nα, by

(11). Lastly, suppose k ∈ {j+1, . . . , n}. Then ϕ−1(y)π(k) = 1+α−
∑k−1

l=1 xπ(l)−(n−k+1)xπ(k),
so |ϕ−1(x)π(k) − ϕ−1(y)π(k)| = α.

Now suppose x and y differ in arbitrarily many entries. As in the previous proof, we have
y = x +

∑n
i=1 αie

i for some α ∈ Rn and δ = ∥α∥1. Define x(k) = x +
∑k

i=1 αie
i for all

k ∈ {0, . . . , n}, so x(0) = x and x(n) = y. Then x(i−1) and x(i) differ on one entry, by αi.
Hence,

∥ϕ−1(x)− ϕ−1(y)∥1 ≤
n∑

i=1

∥ϕ−1(x(i−1))− ϕ−1(x(i))∥1 ≤ n2
n∑

i=1

|αi| ≤ n2δ.

3.2 The computational equivalence

We now provide polynomial-time reductions between HousingMarket and RainbowKKM,
and show that the two problems have the same query complexity in the black-box model.

Theorem 3.4. There exists a polynomial-time reduction from HousingMarket to Rain-
bowKKM.

Proof. Suppose (ε, f1, . . . , fn) is an instance of HousingMarket, and each of the n functions
f i is associated with preference set P i = (P i

1, . . . , P
i
n). We construct an instance (ε′, g1, . . . , gn)

of RainbowKKM. Set the approximation parameter to ε′ = ε
n2 , and let each gi be the

covering function associated with the sparse KKM covering Ci = (Ci
1, . . . , C

i
n) of ∆n−1 defined

by Ci
j := ϕ(P i

j ∩ Σn) for every i, j ∈ [n]. As ϕ is a bijection, a point x lies in Ci
j if and only

12

if ϕ−1(x) lies in P i
j ∩ Σn. Thus, we can efficiently implement gi as a polynomial-time function

which makes at most one call to f i.
Next, we verify that the (Ci

1, . . . , C
i
n) are sparse KKM coverings of ∆n−1. Fix an agent i. It

is immediate that the sets Ci
j are closed, as the P i

j are closed and ϕ is a homeomorphism. We

now check that FS ⊆
⋃

j∈S Ci
j for every S ⊆ [n]. Suppose that S = [n]. By assumption (iii) on

preference sets, P i
1, . . . , P

i
n are a covering of Σn and ϕ is a bijection from Σn to ∆n−1. Hence,

Ci
1, . . . , C

i
n is a covering of ∆n−1. Now suppose S ⊊ [n] and let x ∈ FS , so xj = 0 for all j /∈ S.

Let T = [n]\S. We pick a permutation π of [n] such that T = {π(1), . . . , π(|T |)} and x ∈ ∆π, so
xπ(j) = 0 for all j ∈ [|T |]. Let p = ϕ−1(x). By the definition of ϕ in (5), we have pπ(j) = 1 for all
j ∈ [|T |]. It follows by assumption (ii) on preference sets that p /∈

⋃
j∈[|T |] P

i
π(j) =

⋃
k∈T P i

k. As

(Ci
1, . . . , C

i
n) is a covering of ∆n−1, we have ϕ(p) = x ∈

⋃
k∈[n]C

i
k. It follows that x ∈

⋃
k∈S Ci

k.

Finally, we use a similar argument to show that (Ci
1, . . . , C

i
n) is sparse, i.e. C

i
j ∩ F[n]\{j} = ∅ for

every i ∈ [n]. Suppose x ∈ Ci
j , so p = ϕ−1(x) ∈ P i

j . Suppose x ∈ F[n]\{j}, so xj = 0. Letting
π be a permutation with π(1) = j, we see that pj = 1 and so, by assumption (ii) of preference
sets we have p /∈ P i

j , a contradiction to x ∈ Ci
j .

Let (x, π) be an ε′-approximate Rainbow-KKM solution for our RainbowKKM instance.
Thus there exists a point xi ∈ Ci

π(i) with ∥x − xi∥1 ≤ ε′ for every i ∈ [n]. Let p = ϕ−1(x)

and pi = ϕ−1(xi). Firstly, xi ∈ Ci
π(i) implies pi ∈ P i

π(i). Moreover, ∥p − pi∥1 = ∥ϕ−1(x) −
ϕ−1(xi)∥1 ≤ n2ε′ = ε for every i ∈ [n], as ϕ−1 is n2-Lipschitz. It follows that (p, π) is an
ε-equilibrium solution for the initial HousingMarket instance.

Theorem 3.5. There exists a polynomial-time reduction from RainbowKKM to Housing-
Market.

Proof. Suppose (ε, g1, . . . , gn) is an instance of RainbowKKM, and each gi is associated with
KKM covering Ci

1, . . . , C
i
n of ∆n−1. Without loss of generality, we can assume that the KKM

coverings are sparse (cf. Section 2.2). We construct an instance (ε′, f1, . . . , fn) of Hous-
ingMarket with ε′ = ε

n . Each preference function f i is associated with preference sets
P i := (P i

0, . . . , P
i
n) given by P i

0 = Rn and P i
j = ϕ−1(Ci

j ∩ ∆n−1) for j ∈ [n]. As p ∈ P i
0

for all p ∈ Rn, and p ∈ P i
j if and only if ϕ(p) ∈ Ci

j ∩∆n−1 for any j ∈ [n], we see that each f i

can be implemented efficiently with at most one call to gi.
It is immediate that P i covers Rn, and that P i

0 is closed. Moreover, by assumption the Ci
j

are closed and cover ∆n−1. Hence, as ϕ−1 is a homeomorphism from ∆ to Σn, we see that
the P i

j are closed and cover Σn. So P 1, . . . , Pn satisfy assumptions (i) and (iii) on preference

sets. Finally, we argue that pj ≥ 1 implies p /∈ P i
j for every j ∈ [n], in order to show that the

preference sets satisfy assumption (ii). If p /∈ Σn, then this follows from P i
j ⊆ Σn. Now suppose

p ∈ Σn and pj = 1. Then p lies in Σπ for permutation π = (j, . . .) as defined in Section 3.1.
Hence x := ϕ−1(p) satisfies xj = 0 and so x ∈ F[n]\{j}. As the KKM coverings are sparse by
assumption, we get x /∈ Ci

j .
Now let (p, π) be an ε′-equilibrium solution for the HousingMarket instance. Thus there

exists pi ∈ P i
π(i) with ∥p − pi∥1 ≤ ε′ for every i ∈ [n]. Note that P i

π(i) = ϕ−1(Ci
π(i) ∩∆n−1) is

a subset of Σn by definition of ϕ−1, so at least one entry of pi is 0. It follows that pj ≤ ε′ for
some j ∈ [n]. We claim that (x, π) with x = ϕ(p) is an ε-approximate Rainbow-KKM solution
for the original RainbowKKM instance. We have ϕ(pi) ∈ Ci

π(i). Moreover, as ϕ is n-Lipschitz

by Lemma 3.2, ∥ϕ(p)− ϕ(pi)∥1 ≤ nε′ = ε.

Theorems 3.4 and 3.5 establish that HousingMarket is PPAD-complete (in the white-
box model) if and only if RainbowKKM is. Moreover, in the proofs above we described how

13

to implement the covering functions using one call to the preference functions, and vice versa.
Hence HousingMarket and RainbowKKM have the same query complexity in the black-box
model.

Corollary 3.6. HousingMarket and RainbowKKM have the same query complexity.

It also follows from the reduction of Theorem 3.4 that computing a market equilibrium
in the housing market is straightforward when the market consists of two agents. Indeed, we
briefly describe how an ε-approximate Rainbow-KKM solution can be found in polynomial time
using straightforward binary search on the interval ∆1 when n = 2. Suppose (C1

1 , C
1
2) and

(C2
1 , C

2
2) are two KKM coverings of ∆1 = conv{e1, e2}, and initialize the search interval [x,y]

with x = (0, 1) and y = (1, 0). Note that x ∈ C1
1 and y ∈ C2

2 , and ∥x − y∥1 = 2. Now repeat
the following until ∥x−y∥1 ≤ ε, at which point x and y are both ε-approximate Rainbow-KKM
solutions. Compute the halfway point z = 1

2x + 1
2y. If z does not lie in C1

1 ∪ C2
2 , then the

KKM covering property guarantees z ∈ C1
2 ∩ C2

1 , and we have found an exact Rainbow-KKM
solution. Otherwise, update the left boundary x of the search interval to z if z ∈ C1

1 and the
right boundary y of the search interval to z if z ∈ C2

2 . As ∥x− y∥1 reduces by at least half in
every iteration and we maintain the invariants x ∈ C1

1 and y ∈ C2
2 throughout, this procedure

terminates correctly with a running time and query complexity of O(log(1ε)).

4 PPAD-Hardness of HousingMarket and RainbowKKM

We prove that HousingMarket is PPAD-hard by reducing CakeCutting to the intermedi-
ate problem RainbowKKM. Our reduction shows that any algorithm for solving the housing
market with a fixed number d of agents can be applied to cutting a cake for d players. It also
leads to an exponential lower bound Ω(poly(1ε)) on the query complexity of RainbowKKM
and HousingMarket in the black-box model.

We also provide an alternative proof of the hardness of RainbowKKM by reducing 2D-
Sperner to 3D-KKM. As KKM can be reduced to RainbowKKM by making multiple copies
of the same KKM covering, this reduction implies that HousingMarket is hard even if we
have only three agents with identical preferences. CakeCutting and 2D-Sperner are known
to be PPAD-complete problems [Deng et al., 2012, Hollender and Rubinstein, 2023, Chen and
Deng, 2009].

4.1 Reducing from the CakeCutting problem

Consider a cake represented by one-dimensional interval [0, 1]. The goal is to divide the cake
among d players by making d − 1 cuts and assigning the resulting pieces to agents so that no
agent envies another. The preferences of each agent i ∈ [n] are described by a utility function
ui defined on the set of all possible pieces [a, b] ⊆ [0, 1] (with a ≤ b). These utility functions
satisfy

(i) ui(∅) = 0 and ui([a, b]) > 0 for all 0 ≤ a < b ≤ 1,

(ii) ui([a, b])− ui([a′, b′]) ≤ K(|a− a′|+ |b− b′|) for any two intervals [a, b], [a′, b′] ⊆ [0, 1] and
some constant K.

The first condition is known as non-negativity and hungriness, and the second condition as
Lipschitz continuity (for intervals).

A (d− 1)-cut dividing the cake [0, 1] into d pieces can be represented by a vector x ∈ [0, 1]d

with
∑

i∈[n] xi = 1. Entry xk denotes the length of the k-th piece, and so the k-th piece of

14

the cut is the interval Ik(x) := [
∑

j∈[k−1] xj ,
∑

j∈[k] xj]. It is easy to see that the space of all
(d − 1)-cuts consists of the simplex ∆d−1. A cut x is envy-free if there exists a one-to-one
assignment of pieces to players so that each player (weakly) prefers their piece to all other
pieces, i.e., there exists a permutation π of [d] such that ui(Iπ(i)(x)) ≥ ui(Ik(x)) for all k ∈ [n].
A cut is ε-envy-free if ui(Iπ(i)(x)) ≥ ui(Ik(x))− ε.

Theorem 4.1 (Stromquist [1980]). Under assumptions (i) and (ii), there exists an envy-free
cut.

In the corresponding total search problem CakeCutting stated below, we assume that
u1, . . . , ud are given as function oracles or polynomial-time algorithms, depending on the com-
putational model. We let d-CakeCutting denote the problem with a fixed number d of players.

CakeCutting

Input: Approximation parameter ε > 0. Utility functions u1, . . . , ud for agents [d]
satisfying assumptions (i) and (ii).
Output: ε-envy-free cut x ∈ ∆d−1 and corresponding assignment π of pieces to players.

Theorem 4.2 ([Hollender and Rubinstein, 2023]). CakeCutting is PPAD-complete.

An earlier result by Deng et al. [2012] showed that CakeCutting is PPAD-complete when
preferences are not specified via utility functions but by means of more general ‘preferences
sets’, analogous to our model of the housing market.

We are now ready to reduce CakeCutting to RainbowKKM, which implies that Rain-
bowKKM and HousingMarket are PPAD-hard. Our proof of Theorem 4.3 relies on the
representation of cake preferences in terms of utilities.

Theorem 4.3. There exists a polynomial-time reduction from d-CakeCutting to d-RainbowKKM.

Proof. Suppose (ε, u1, . . . , ud) is an instance of d-CakeCutting. We define a KKM covering
Ci = (Ci

1, . . . , C
i
d) of ∆d−1 for each player i ∈ [d] by

Ci
j := {x ∈ ∆d−1 | ui(Ij(x)) ≥ ui(Ik(x)) for all k ∈ [d]}.

Hence, Ci
j consists of all the cake cuts for which agent i prefers piece j. To see that Ci is indeed

a KKM covering of ∆d−1, consider any S ⊆ [d] and let x ∈ FS = conv{ek | k ∈ S}. By choice
of x, we have xk = 0 for all k /∈ S and xk > 0 for some k ∈ S. The non-negativity property
of the utility function ui then implies that player i prefers some piece of the cake indexed by
S to all the pieces not indexed by S. It follows that x ∈ Ci

k for some k ∈ S, so Ci is a KKM
covering.

We now construct an instance of RainbowKKM. Fix approximation parameter ε′ = ε
4K

(where K is the Lipschitz constant of the utility functions ui), and let g1, . . . , gd be the KKM
covering functions corresponding to C1, . . . , Cd. As gi(x, j) = 1 if x ∈ Ci

j and gi(x, j) = 0

otherwise, it is straightforward to see that gi can be implemented efficiently with at most d
calls to the utility function ui of player i.

Suppose (x, π) is a solution to this RainbowKKM instance (ε′, g1, . . . , gd). Hence, there
exists a collection of points x1, . . . ,xd such that xi ∈ Ci

π(i) and ∥x − xi∥1 ≤ ε′ for all i ∈ [d].

We will now show that (x, π) forms an ε-approximate solution to the CakeCutting instance.
Fix a player i ∈ [d]. Our goal is to show that she ε-approximately prefers the π(i)-th piece of

cut x to all other pieces specified by x. Fix some k ∈ [d], and the k-th pieces Ik(x) = [a, b] and
I ′k(x) = [a′, b′] of cuts x and xi. Note that a =

∑k−1
l=1 xl and a′ =

∑k−1
l=1 xil, so ∥x − xi∥1 ≤ ε′

15

implies |a − a′| ≤ ε′. Likewise, |b − b′| < ε′. By the Lipschitz continuity of the agent’s utility
function, we thus have

ui([a, b])− ui([a′, b′]) ≤ K(|a− a′|+ |b− b′|) ≤ 2ε′K =
ε

2
.

As player i prefers the π(i)-th piece of cut xi by choice of xi, it follows that ui(Iπ(i)(x)) ≥
ui(Ik(x

i)) + ε for every k ∈ [d].

Hollender and Rubinstein [2023] showed that CakeCutting with a fixed number of players
d ≥ 4 has a query complexity lower bound of Ω(poly(1ε)). The reduction in our proof of
Theorem 4.3 thus implies the same lower bound on the query complexity for d-HousingMarket
and d-RainbowKKM.

Corollary 4.4. d-HousingMarket and d-RainbowKKM with d ≥ 4 have a query complexity
of Ω(poly(1ε)).

4.2 The reduction from the 2D-Sperner problem

We now develop the reduction from 2D-Sperner to 3-RainbowKKM. We do this via the in-
termediary problem 3D-KKM. As we know from Section 3.2 that n-HousingMarket and
n-RainbowKKM are computationally equivalent, Theorem 2.2 then implies that both n-
HousingMarket and n-RainbowKKM are PPAD-hard for any n ≥ 3.

The 2D-Sperner problem. Consider the triangulation of triangleN∆2 = conv{Ne1, Ne2, Ne3}
with side lengths N into equilateral cells of side length 1. This is illustrated for N = 4 in
Fig. 2. The vertices of this triangulation are VN := {v ∈ N3

0 | v1 + v2 + v3 = N}. A coloring
c : VN → {1, 2, 3} assigns each vertex one of three colors. It is a Sperner coloring if c(v) ̸= i
when vi = 0. That is, each corner Nei of the triangle is colored in i, and each point on the
boundary between Nei and Nej is colored in i or j. A cell of the triangulation is trichromatic
if each of its three vertices receives a different color. Sperner’s lemma (Lemma 4.5) guarantees
the existence of a trichromatic cell.

Lemma 4.5 ([Sperner, 1928]). Every Sperner coloring of every triangulation of a triangle has
at least one trichromatic cell.

This leads naturally to the computational problem of finding a trichromatic cell. We assume
that the size N of the triangulation is given as an input parameter in a binary representation,
as the problem is easy otherwise.

2D-Sperner

Input: The size N ∈ N of the triangle, and a Sperner coloring function c : VN → {1, 2, 3}
of the vertices of the triangulation of N∆2.
Output: The three vertices of a trichromatic cell in the (unit) triangulation of N∆2.

The 2D-Sperner problem stated above is computationally equivalent to the version con-
sidered in [Chen and Deng, 2009], which considers a triangulation of a right-angled triangle. It
is straightforward to see that we can reduce between these problems. Chen and Deng [2009]
settled the computational complexity of 2D-Sperner.

Theorem 4.6 ([Chen and Deng, 2009]). 2D-Sperner is PPAD-complete.

16

4e1 4e2

4e3

Figure 2: Triangulation of simplex ∆2 with side length 4 into regular triangles with side length
1, drawn using solid black lines. The three corresponding covering sets C1, C2 and C3 consist
of the yellow, red and blue regions, respectively.

We now turn to the problem of reducing from 2D-Sperner to KKM. Fix the triangulation
of N∆2 and a Sperner coloring c. For simplicity, consider the variant of KKM that seeks to
find an ε-approximate KKM solution given a KKM covering of N∆2, and N is given as an
input parameter alongside the covering function. This is equivalent to our original definition of
KKM with approximation parameter ε′ = ε

N . Define the following KKM covering of N∆2. For
i ∈ {1, 2, 3}, let

Ci := {x ∈ N∆2 | c(v) = i for some v ∈ argminv∈V ∥x− v∥1}. (12)

Hence, Ci contains all the points whose closest vertex is i-colored. The three covering sets are
illustrated in Fig. 2; each Ci is the union of identically-colored hexagons. It is straightforward
to check that (C1, C2, C3) is a KKM covering of N∆2, i.e. that FS = conv{Nei | i ∈ S} is
contained in

⋃
i∈S Ci for every S ⊆ [n]. Indeed, fix S ⊆ [n] and x ∈ FS , so xk = 0 for all k /∈ S.

If S = {1}, then x is a vertex. As c is a Sperner coloring, we have c(x) = 1 and x ∈ C1. If
S = {1, 2}, then x lies on the boundary of N∆2 between Ne1 and Ne2. The closest vertex
v ∈ V to x also lies on this side and, as c is a Sperner coloring, we have c(v) ∈ {1, 2}. Hence,
x ∈ C1 ∪C2. Finally, if S = {1, 2, 3}, then x lies in the interior. By construction, x ∈ Cc(v) for
some vertex v closest to x. So x ∈ C1 ∪ C2 ∪ C3.

We now establish, in Lemma 4.7, that a solution x to the instance of KKM with approxi-
mation parameter ε = 1

8 and KKM covering (C1, C2, C3) as defined in (12) lies in the interior of
a trichromatic cell. This forms the main part of our reduction. For this result, we will need the
intuitive result of Lemma 4.8 that the closest vertex to a point in a cell, or to a point ‘almost in
a cell’, is one of the vertices of this cell. Note that we can apply a distance-preserving map to
N∆2 that maps any given cell ∆ to ∆2. Every vertex v in the resulting triangulation satisfies
v ∈ Zn and v1 + v2 + v3 = 1. We make use of this transformation to simplify our proofs of
Lemmas 4.7 and 4.8.

Lemma 4.7. Fix a point x in cell ∆ of the triangulation. If its neighborhood N1/8(x) intersects
with C1, C2 and C3, then x lies in the interior of ∆, and ∆ is trichromatic.

Lemma 4.8. If x lies in N 1
8
(y) for some point y of a cell ∆, then one of the three vertices of

this cell ∆ is a closest vertex to x.

17

Proof. Apply a distance-preserving map to N∆2 so that ∆ = ∆2. Let v /∈ {e1, e2, e3} be a
vertex of the triangulation. Recall that its entries are integral and v1 + v2 + v3 = 1. We now
show that ∥x− v∥1 ≥ 2− 1

8 and ∥x− ei∥ ≤ 4
3 for some i ∈ {1, 2, 3}.

Suppose first that x lies on the boundary of ∆. Without loss of generality, x is a convex
combination of e1 and e2 and x1 ≥ x2, so x3 = 0 and x1 + x2 = 1. Hence ∥x − e1∥1 =
1− x1 + x2 ≤ 1, so the L1-distance of x to one of the vertices of ∆ is at most 1. Next, we show
that ∥x− v∥1 = |x1 − v1|+ |x2 − v2|+ |v3| ≥ 2 by distinguishing between different possibilities
for v. If v1, v2 ≥ 1, then v3 ≤ −1 and so ∥x−v∥1 ≥ 2−x1−x2+ |v3| ≥ 2. If v1, v2 ≤ 0, with at
least one strict inequality, then v3 ≥ 2 and so ∥x− v∥1 = x1 + x2 − v1 − v2 + |v3| ≥ 4. If v1 = 0
and v2 ≥ 2, then v3 ≤ −1 and so ∥x − v∥1 = x1 + x2 + v2 + |v3| ≥ 2. If v1 < 0 and v2 = 1,
then v3 ≥ 1 implies ∥x − v∥1 ≥ 2. Finally, if v1 < 0 and v2 > 1, then v2 − v1 ≥ 3 guarantees
the same.

Now suppose that x lies in the interior of ∆. Without loss of generality, let x1 ≥ x2 ≥ x3,
so ∥x− e1∥1 ≤ ∥x− e2∥1 and ∥x− e1∥1 ≤ ∥x− e3∥1. Moreover, ∥x− e1∥1 = 1− x1 + x2 + x3
is maximized when x is the barycenter of ∆2, so x1 = x2 = x3 = 1

3 . Hence ∥x − ei∥1 ≤ 4
3 .

Let y be the point at which the line segment from x to v intersects the boundary of ∆. It
is straightforward that ∥x − v∥1 = ∥x − y∥1 + ∥y − v∥1 ≥ ∥y − v∥1 ≥ 2, where the second
inequality follows from the previous paragraph.

Finally, suppose x does not lie in ∆. By construction, there exists y on the boundary of ∆
with ∥x − y∥1 ≤ 1

8 . By the triangle inequality and the previous paragraph, the distance from
x to e1, e2 or e3 is at most 1 + 1

8 , and the distance from x to y is at least 2− 1
8 , so the result

holds.

Proof of Lemma 4.7. Without loss of generality, let ∆ be the unit simplex ∆2 (by applying a
suitable distance-preserving map) and suppose each of its vertices ei is i-colored. Let z :=
(13 ,

1
3 ,

1
3) be the barycenter of ∆.

Assume that N1/8(x) ∩ Ci ̸= ∅, so there exist xi ∈ Ci, for all i ∈ {1, 2, 3}. Suppose we can
show that x lies in N1/2(z). Then xi ∈ N5/8(z) for every i. As N5/8(z) is contained in ∆, the
points x,x1,x2 and x3 then all lie in the interior of ∆. But as xi ∈ Ci, and e1, e2 and e3 are
the three closest vertices to any point in ∆ by Lemma 4.8, it then follows from the definition
of Ci that ∆ is trichromatic.

It remains to show that x ∈ N1/2(z). Suppose, for the sake of contradiction, that x /∈ N1/2(z).

This means that ∥x − z∥1 = |x1 − 1
3 | + |x2 − 1

3 | + |x3 − 1
3 | >

1
2 . Without loss of generality,

assume that x1 ≥ x2 ≥ x3. As 0 ≤ x ̸= z and x1 + x2 + x3 = 1, we have x1 > x3. Below, we
will argue that

x31 > x33 or x32 > x33. (13)

This implies ∥x3 − e3∥1 − ∥x3 − e1∥1 = x31 − x33 > 0 or ∥x3 − e3∥1 − ∥x3 − e2∥1 = x32 − x33 > 0.
The fact that x3 is thus closer to e1 or e2 leads to the contradiction x3 /∈ C3.

We now argue that (13) holds. As ∥x− x3∥1 ≤ 1
8 , we have |xi − x3i | ≤ 1

8 for every i. Hence
(13) holds immediately if x1 − x3 > 1

4 or x2 − x3 > 1
4 . It remains to prove this last claim. As

x lies in ∆, we have x1 + x2 + x3 = 1. Hence, x1 ≥ x2 ≥ x3 and x1 > x3 implies x1 > 1
3 and

x3 < 1
3 . It follows that ∥x − z∥1 = x1 − x3 + |x2 − 1

3 | >
1
2 , so x1 − x3 > 1

4 or |x2 − 1
3 | >

1
4 . If

x1 − x3 >
1
4 , we are done. So suppose x1 − x3 ≤ 1

4 and |x2 − 1
3 | >

1
4 . This implies x2 >

1
4 +

1
3 or

x2 < 1
3 − 1

4 . Suppose the latter holds, so x2 < 1
3 − 1

4 . We also bound x1 from above by noting
that x1−x3 ≤ 1

4 and x3 <
1
3 imply x1 <

1
4+

1
3 . It follows that x1+x2+x3 <

1
4+

1
3+

1
3−

1
4+

1
3 = 1,

a contradiction. Hence, we must have x2 >
1
4 +

1
3 . It follows that x2 − x3 > x2 − 1

3 > 1
4 , and we

are done.

Theorem 4.9. There exists a polynomial-time reduction from 2D-Sperner to 3D-KKM.

18

Proof. Suppose (N, c) is a 2D-Sperner instance. We construct an instance (ε, g) of KKM
with ε = 1

8 . The covering function g is associated with the KKM covering C1, C2, C3 of N∆2

constructed from u as described in (12). Note that for any point x ∈ N∆2, we have g(x, i) = 1 if
a nearest vertex to x is i-colored, and g(x, i) = 0 otherwise. Given an arbitrary point x ∈ N∆2,
we can round up or down the entries of x to determine its nearest vertices v1 = (⌊x1⌋, ⌈x2⌉, ⌈x3⌉),
v1 = (⌈x1⌉, ⌊x2⌋, ⌈x3⌉) and v3 = (⌈x1⌉, ⌈x2⌉, ⌊x3⌋). (If x is a vertex of the triangulation, v1, v2
and v3 will coincide; if x lies on a face separating two cells, two of these vertices will coincide.)
Then, with at most 3 calls to the coloring function, we can determine whether v1, v2 or v3 are
i-colored. This implements the covering function g efficiently.

Now suppose x is a solution to the KKM instance (ε, g), so there exists a point xi ∈ Ci

with ∥xi − x∥1 ≤ 1
8 for every i ∈ {1, 2, 3}. The point x lies in some cell ∆ of the triangulation.

By Lemma 4.7, x lies in the interior of ∆, and the cell is trichromatic. As above, we can
compute its vertices v1, v2 and v3 efficiently by rounding up and down to recover a solution to
the 2D-Sperner instance (N, c).

Theorem 4.10. There exists a polynomial-time reduction from 3D-KKM to 3-RainbowKKM.

Proof. Suppose (ε,N, g) is an instance of KKM associated with KKM covering C = (C1, C2, C3)
of N∆2. We reduce to an instance (ε′, h1, h2, h3) of 3-RainbowKKM with approximation
parameter ε′ := ε

N and three identical copies of the KKM covering (D1, D2, D3) of ∆2 defined
by Di = 1

NCi. A ε′-approximate solution x to the latter, together with any permutation π
of [3], is an ε-approximate solution to the former, and the covering functions hi for the 3-
RainbowKKM instance can be constructed efficiently.

We can now combine the equivalence of n-HousingMarket and n-RainbowKKM shown
in Section 3.2 with Theorems 2.2 and 4.10 to get the following hardness result.

Corollary 4.11. n-HousingMarket and n-RainbowKKM are PPAD-hard for any n ≥ 3.

5 Membership of HousingMarket and RainbowKKM in PPAD

We now show that RainbowKKM lies in PPAD by reducing it to Sperner. By Theorem 3.4,
this also immediately implies that HousingMarket lies in PPAD. Our reduction uses the
same labeling and coloring technique employed by [Deng et al., 2012] to reduce CakeCutting
to Sperner.

Suppose C1, . . . , Cn is a family of KKM coverings. Like Deng et al. [2012], we first we define
the Kuhn triangulation of the ‘large’ cube [0, N]n−1 obtained by dividing the cube into Nn−1

unit cubes, and then subdividing each unit cube into (n−1)! simplicial cells. Next, we label and
color each vertex of this triangulation with one of colors [n−1]0 and labels [n−1]0.

2 In order to
define our labeling rule and coloring function, we first divide the ‘large’ cube into (n−1)! ‘large’
simplices. Then we associate each vertex v with its barycentric coordinates α(v) w.r.t. the
vertices of the large simplex in which v lies. The labeling rule and coloring function are then
specified with respect to α(v). We use the same labeling rule as [Deng et al., 2012]; it guarantees
that the vertices of a cell all receive different labels. Our coloring function then assigns each
vertex v, labeled i, the smallest color j for which α(v) lies in covering set Ci

j . Sperner’s lemma
implies that there exists a panchromatic cell. Thus for every label i, the i-labeled vertex of this
cell is colored differently. Finally, as the L1-distance between the barycentric coordinates of any
two vertices in a cell of the Kuhn triangulation is at most n

N , we arrive at an n
N -approximate

Rainbow-KKM solution to the RainbowKKM problem with KKM coverings C1, . . . , Cn.

2Unlike Deng et al. [2012], we label and color the entire triangulated large cube, and not just a subdivision of
it. This allows us to reduce our problem to the standard Sperner problem defined on the subdivision of a cube.

19

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

Figure 3: The Kuhn triangulation of the unit cube.

5.1 Kuhn’s triangulation

We describe Kuhn’s method for triangulating a cube introduced by Scarf [1982] and Deng et al.
[2012]. We begin by defining Kuhn’s triangulation of the n-dimensional unit cube [0, 1]n. For
each permutation π of [n], define the base simplex ∆̂π := {x ∈ [0, 1]n | xπ(1) ≥ xπ(2) ≥ · · · ≥
xπ(n)}. The vertices of this simplex are given by v0

π := 0 and vi
π := vi−1

π + eπ(i) for all i ∈ [n].

It is straightforward that the unit cube consists of the union of ∆̂π taken over all permutations
π, and that the interiors of the base simplices do not overlap. The Kuhn triangulation of the
unit cube is illustrated for n = 3 in Fig. 3.

Next, fix a positive integer N ∈ N. We describe a way to triangulate the cube [0, N]n of side
length N . We also call this the Kuhn triangulation of the “large cube”. First, divide the cube
into Nd unit cubes. Then triangulate each unit cube into base simplices (or cells) by applying
Kuhn’s triangulation as described in the previous paragraph. Hence each unit cube contains n!
cells, one for each permutation π. In particular, if x is the smallest point in the cube, then its
cell associated with permutation π is x + ∆̂π, and is the convex hull of vertices v0

π := x and
vi
π := vi−1

π + eπ(i) for all i ∈ [n]. The set of all vertices of the triangulation is VN := [n]n0 .
Alternatively, we can also divide the large cube [0, N]n into simplices N∆̂π := {Nx | x ∈

∆̂π} for all π. (This is analogous to performing Kuhn’s triangulation of the unit cube, scaled
up by a factor of N .) We will refer to the n! resulting simplices N∆̂π as the “large simplices”.
Kuhn’s triangulation of the large cube has the important property, stated in Lemma 5.1, that
every cell is contained entirely in one of the large simplices. For more details on Kuhn’s trian-
gulation, see [Deng et al., 2012] and [Scarf, 1982].

Lemma 5.1 ([Deng et al., 2012]). Every cell of Kuhn’s triangulation of the large cube [0, N]n

is contained in a large simplex N∆̂π for some permutation π of [n].

For every vertex v ∈ VN , let α(v) denote its barycentric coordinates α(v) = (α(v)0, . . . , α(v)n)
w.r.t. the vertices v0π, . . . , v

n
π of the large simplex N∆̂π in which v lies. Note that α(v) is (n+1)-

dimensional and satisfies α(v) ≥ 0 and
∑

i∈[n]0 α(v)i = 1. If a vertex lies in two large simplices

N∆̂π and N∆̂τ , then Lemma 5.2 states that its barycentric coordinates w.r.t. the vertices of
N∆̂π and N∆̂τ are identical. This ensures that α(v) is well-defined. Moreover, Lemma 5.3
shows that the L1-distance between the barycentric coordinates of two vertices of a cell is at
most n+1

N . The proof of Lemma 5.3 is essentially identical to the proof in [Deng et al., 2012],
and is stated for completeness.

Lemma 5.2. Suppose x lies in N∆̂π and N∆̂π. Then

n∑
i=0

αiv
i
π =

n∑
i=0

αiv
i
τ

20

for some barycentric coordinate vector α ∈ ∆n.

Proof. We will construct a sequence π = π0, π1, . . . , πn = τ of permutations of [n] that satisfies
three properties. Let αk be the barycentric coordinates of x w.r.t. the vertices v0 = 0 and
vi
πk = vi−1

πk + eπ(i) (∀i ∈ [n]) of N∆̂πk . The three properties are:

(i) πk
1 , . . . , π

k
k = τ1, . . . , τk for all k ∈ [n],

(ii) x ∈ N∆̂πk for all k ∈ [n]0,

(iii) αk = αk−1 for all k ∈ [n].

These three properties immediately imply the lemma.
We now define the sequence of permutations. Let π0 := π. We then iteratively define πk

from πk−1 as follows. Intuitively, the k-th iteration moves the element τ(k) in permutation πk−1

to the k-th position of πk. Formally, we let j ∈ [n] be the index for which πk(j) = τ(k) and
define

πk(l) :=

πk−1(j) if l = k,

πk−1(l − 1) if l ∈ {k + 1, . . . , j},
πk−1(l) else

It is immediate that property (i) holds, and that j ≥ k in every iteration; so the sequence of
permutations is well-defined. We now prove property (ii) by induction on k. The base case
x ∈ ∆̂π0 holds by definition. Now suppose that x ∈ N∆̂πk−1 , and let j be as chosen above to
define πk. Hence, xπk−1(k) ≥ · · · ≥ xπk−1(j). Moreover, x ∈ N∆̂τ implies xπk−1(j) ≥ xπk−1(k)

by our choice of j. It follows that xπk−1(k) = · · · = xπk−1(j), so x ∈ N∆̂πk . Finally, we prove

property (iii). For this, note that the vertices corresponding to πk−1 and πk satisfy vi
πk−1 = vi

πk

for i ∈ {1, . . . , k − 1} and i ∈ {j, . . . , n} by construction of the vertices of N∆̂πk−1 and N∆̂πk .
Moreover, x ∈ N∆̂πk−1 and x ∈ N∆̂πk inductively imply αk−1

i = αk
i for i ∈ {j, . . . , n}, then

αk−1
i = 0 = αk

i for i ∈ {k, . . . , i− 1}, and finally αk−1
i = αk

i for i ∈ {1, . . . , k − 1}.

Lemma 5.3 (cf. [Deng et al., 2012]). For any two vertices y and z of a cell, ∥α(y)−α(z)∥1 ≤
n+1
N .

Proof. Let y and z be two vertices of a cell ∆ that is contained in large simplex N∆̂π. Without
loss of generality, we assume that π = (1, . . . , n). (For other permutations, the result holds by
symmetry). The vertices of the large simplex are v0 = 0 and vi = vi−1 + ei for every i ∈ [n].

Let x be the smallest point in the unit cube containing ∆, and the n + 1 vertices of ∆ be
w0

τ = x and wi
τ = wi−1

τ + eτ(i) (∀i ∈ [n]) for some permutation τ . Without loss of generality,
we let y = wk and z = wl with k < l. By construction of the vertices of the large simplex, the
barycentric coordinates of wi

τ for i ∈ [n] are given by α(wi
τ) = α(wi−1

τ) + 1
N eτ(i) − 1

N eτ(i)−1.
Hence,

α(z)− α(y) =
1

N

l∑
i=k+1

(
eτ(i) − eτ(i)−1

)
∈ 1

N
{−1, 0, 1}n+1.

Starting from vertex 0 and using the same argument as in the proof of Lemma 5.3, we can
iteratively show for every vertex v ∈ VN that the entries of α(v) can be expressed as a proper
fraction with denominator N .

Corollary 5.4. For any vertex v ∈ VN and i ∈ [n]0, we have α(v)i ∈
{

1
N , 2

N , . . . , 1
}
.

21

Finally, we use the mapping α of vertices to their barycentric coordinates to define a labeling
of the vertices. We use the same labeling rule as Deng et al. [2012], but extend it to the entire
triangulated large cube. Lemma 5.5 shows that, under this labeling, every cell’s vertices are
labeled with all numbers [n]0. (We restate the proof from [Deng et al., 2012] for completeness.)
Such a labeling is called a Simmons-Su labeling. Note also that L(v) is well-defined, as Nα(v)i
is integral by Corollary 5.4. For each v ∈ V , let

L(v) :=
∑
i∈[n]0

iNα(v)i mod n+ 1. (14)

Lemma 5.5 (cf. [Deng et al., 2012]). The labeling L is a Simmons-Su labeling.

Proof. Suppose ∆ is a cell in the triangulation of the large cube. As in the proof of Lemma 5.3,
we see that the barycentric coordinates of the vertices v0

π, . . . ,v
n
π of ∆ satisfy α(vi

π) = α(vi−1
π)+

1
N eπ(i) − 1

N eπ(i)−1. Hence every vertex of ∆ receives a different label, as

L(vi
π) ≡ L(vi−1

π) + π(i)− (π(i)− 1) ≡ L(vi−1
π) + 1 mod n+ 1.

5.2 The Sperner problem

We now define the Sperner problem for arbitrary dimensions. In contrast to 2D-Sperner,
which was defined using a triangulated triangle, Papadimitriou [1994] introduces the Sperner
problem for arbitrary dimensions using a ‘large’ cube divided into unit cubes. Suppose, for
instance, that we are given a (Kuhn) triangulation of the large cube [0, N]n. A coloring c :
VN → [n]0 of its vertices is a Sperner coloring if it satisfies

1. c(v) ̸= i if vi = 0, for all i ∈ [n],

2. c(v) ̸= 0 if vi = N for any i ∈ [n].

By embedding the triangulated cube into the triangulation of an n-dimensional simplex, it
can be shown that Sperner’s lemma implies the existence of a panchromatic cell. That is, a
cell whose n + 1 vertices all receive a different color. This inspires the following total search
problem, analogous to 2D-Sperner. Papadimitriou [1994, Proof of Theorem 3] shows that
Sperner lies in PPAD.

Sperner

Input: Dimension n ∈ N and side length N ∈ N specifying Kuhn triangulation of large
cube [0, N]n. Sperner coloring function c : [N]n0 → [n]0.
Output: The vertices of a panchromatic cell.

Theorem 5.6 ([Papadimitriou, 1994]). Sperner is in PPAD.

5.3 The reduction from RainbowKKM to Sperner

Suppose C1, . . . , Cn is a family of n KKM coverings of ∆n and let ε > 0 be an approximation
parameter. For notational convenience, index the sets of each covering Ci by [n− 1]0 instead of
[n], so Ci = (Ci

0, C
i
1, . . . , C

i
n−1). Without loss of generality, we assume that the KKM coverings

are sparse (cf. Section 2.2). Consider the Kuhn triangulation of the cube [0, N]n−1 with N = n
ε

and let its vertices be the set V . Note that the cube is (n− 1)-dimensional. The vertices of this

22

triangulation are labeled with labels [n− 1]0 according to labeling L. The key to our reduction
is to define the coloring c : V → [n− 1]0 as

c(v) = min
{
j ∈ [n− 1]0 | α(v) ∈ C

L(v)
j

}
. (15)

We now argue that c is a Sperner coloring by verifying both conditions (1) and (2) of the
definition in Section 5.2. Fix some vertex v ∈ V . If vj = 0 for some j ∈ [n−1], then αj = 0, and
so α ∈ F[n−1]0\{j}. As the KKM coverings are sparse, we have α /∈ Ci

j for all coverings C
i. This

verifies condition (1). Now suppose vj = N for some j ∈ [n−1]. This implies
∑n−1

k=1 αk = 1, and
so α0 = 0. By the same argument as above, we get α /∈ Ci

0 for all coverings Ci. This verifies
condition (2).

Hence there exists a cell of the triangulation that is panchromatic, so every vertex of the
cell has a different color. Fix such a cell. As L is a Simmons-Su labeling, each vertex of the
cell also has a different label. Label these vertices v0, . . . ,vn−1 so that L(vi) = i. Define the
permutation π of [n− 1]0 as π(i) = c(vi). Then α(vi) ∈ Ci

π(i). By Lemma 5.3, the L1-distance

between any two vi and vj is at most n
N = ε. It thus follows that any vi together with π form

an ε-approximate Rainbow-KKM solution for the family of KKM coverings C1, . . . , Cn.

Theorem 5.7. There is a polynomial-time reduction from RainbowKKM to Sperner.

Proof. Suppose (ε, g1, . . . , gn) is an instance of RainbowKKM, and each gi is associated with
KKM covering Ci. It remains to argue that we can efficiently construct a routine that imple-
ments coloring function c using functions gi. Recall the definition of the coloring c from (15). In
order to determine the color of vertex v, we first compute its barycentric coordinates α. Then
compute its label l =

∑
i∈[n−1]0

iNα(v) mod n. Finally, determine the smallest j ∈ [n− 1]0 for

which α ∈ C l
j , using at most n calls to the covering function gl.

In the white-box model, Theorems 5.6 and 5.7 imply that HousingMarket and Rain-
bowKKM lie in PPAD. Moreover, the reduction also immediately implies a brute-force ap-
proach for RainbowKKM (and thus also for HousingMarket): compute the color c(v)
of each vertex v ∈ V and check for each cell whether it is panchromatic. In the black-box
model, this algorithm has an exponential query complexity O(Nn) in the input size log 1

ε of
the approximation parameter ε. We can improve this upper bound on the query complexity
of HousingMarket and RainbowKKM. [Deng et al., 2011] show that Sperner has a query
complexity of Θ(Nn−1) [Deng et al., 2011]. Our reduction in the proof of Theorem 5.7 solves
an instance of RainbowKKM with O(Nn−1) queries to the coloring function c and every such
query costs at most n queries to the covering function.

Corollary 5.8. HousingMarket and RainbowKKM have query complexity O(Nn−1).

6 Conclusion

We have shown that HousingMarket and the closely related RainbowKKM are PPAD-
complete. Whereas the housing market is tractable with two agents, we show that PPAD-
completeness holds even when we restrict the market to n ≥ 3 agents with identical preferences.
Moreover, we describe exponential upper and lower bounds for the query complexity of solving
the two problems in the white-box model that hold when n ≥ 4.

While our results may be perceived as negative for market design, it is not uncommon
for PPAD-complete problems to be implemented for allocation in practice (e.g., approximate
competitive equilibrium with equal incomes for course allocation). Rather we hope that our

23

results will stimulate further examination of the computational complexity of allocation systems
with income effects. Three sets of open questions naturally arise.

First, what is the computational complexity of HousingMarket when preferences are pro-
vided as utility functions instead of preference sets? Does hardness continue to hold under the
natural assumptions of monotonicity in money and no externalities as in Quinzii [1984] and
Svensson [1984]? What is the complexity of computing competitive equilibrium in model with
multi-good demand under assumptions, such as net substitutability condition, that guarantee
existence [Baldwin et al., 2023]? Secondly, what is the exact mapping between the assumptions
in HousingMarket and the monotonicity assumptions on valuations in CakeCutting im-
posed by Deng et al. [2012] and Hollender and Rubinstein [2023] to achieve polynomial-time
algorithms for cutting a cake with 3 and 4 players? Thirdly, what algorithms might work well
in practice for approximating equilibria in the presence of income effects?

References

B. Baisa. Auction design without quasilinear preferences. Theoretical Economics, 12(1):53–78,
2017.

E. Baldwin, R. Jagadeesan, P. Klemperer, and A. Teytelboym. The equilibrium existence
duality. Journal of Political Economy, 131(6):000–000, 2023.

J.-P. Benoit and V. Krishna. Multiple-object auctions with budget constrained bidders. The
Review of Economic Studies, 68(1):155–179, 2001.

S. Bhattacharya, G. Goel, S. Gollapudi, and K. Munagala. Budget constrained auctions with
heterogeneous items. In Proceedings of the Forty-Second ACM Symposium on Theory of
Computing, STOC ’10, page 379–388, New York, NY, USA, 2010. Association for Computing
Machinery. doi: 10.1145/1806689.1806743.

Y.-K. Che and I. Gale. Standard auctions with financially constrained bidders. The Review of
Economic Studies, 65(1):1–21, 1998.

T. Chen, X. Chen, B. Peng, and M. Yannakakis. Computational hardness of the Hylland-
Zeckhauser scheme. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2253–2268. SIAM, 2022.

X. Chen and X. Deng. On the complexity of 2D discrete fixed point problem. Theoretical
Computer Science, 410(44):4448–4456, 2009.

X. Chen and S.-H. Teng. Spending is not easier than trading: on the computational equiva-
lence of Fisher and Arrow-Debreu equilibria. In International Symposium on Algorithms and
Computation, pages 647–656. Springer, 2009.

X. Chen, D. Dai, Y. Du, and S.-H. Teng. Settling the complexity of Arrow-Debreu equilibria
in markets with additively separable utilities. In 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, pages 273–282. IEEE, 2009a.

X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of computing two-player nash
equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009b.

X. Chen, D. Paparas, and M. Yannakakis. The complexity of non-monotone markets. Journal
of the ACM (JACM), 64(3):1–56, 2017.

24

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. Communications of the ACM, 52(2):89–97, 2009.

X. Deng, Q. Qi, A. Saberi, and J. Zhang. Discrete fixed points: Models, complexities, and
applications. Mathematics of Operations Research, 36(4):636–652, 2011.

X. Deng, Q. Qi, and A. Saberi. Algorithmic solutions for envy-free cake cutting. Operations
Research, 60(6):1461–1476, 2012.

S. Dobzinski, R. Lavi, and N. Nisan. Multi-unit auctions with budget limits. Games and
Economic Behavior, 74(2):486–503, 2012.

D. Gale. Equilibrium in a discrete exchange economy with money. International Journal of
Game Theory, 13(1):61–64, 1984.

P. W. Goldberg. A survey of PPAD-completeness for computing Nash equilibria. arXiv preprint
arXiv:1103.2709, 2011.

A. Hollender and A. Rubinstein. Envy-free cake-cutting for four agents. In 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science (FOCS), pages 113–122. IEEE,
2023.

A. Hylland and R. Zeckhauser. The efficient allocation of individuals to positions. Journal of
Political economy, 87(2):293–314, 1979.

B. Knaster, K. Kuratowski, and S. Mazurkiewicz. Ein Beweis des Fixpunktsatzes für n-
dimensionale Simplexe. Fundamenta Mathematicae, 14(1):132–137, 1929.

T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic activ-
ities. Econometrica: journal of the Econometric Society, pages 53–76, 1957.

S. Morimoto and S. Serizawa. Strategy-proofness and efficiency with non-quasi-linear prefer-
ences: A characterization of minimum price walrasian rule. Theoretical Economics, 10(2):
445–487, 2015.

C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of
existence. Journal of Computer and system Sciences, 48(3):498–532, 1994.

M. Quinzii. Core and competitive equilibria with indivisibilities. International Journal of Game
Theory, 13(1):41–60, 1984.

A. E. Roth and A. Postlewaite. Weak versus strong domination in a market with indivisible
goods. Journal of Mathematical Economics, 4(2):131–137, 1977.

A. Rubinstein. Hardness of Approximation between P and NP. Morgan & Claypool, 2019.

H. Saitoh and S. Serizawa. Vickrey allocation rule with income effect. Economic Theory, 35:
391–401, 2008.

H. E. Scarf. The computation of equilibrium prices: an exposition. Handbook of mathematical
economics, 2:1007–1061, 1982.

L. Shapley and H. Scarf. On cores and indivisibility. Journal of mathematical economics, 1(1):
23–37, 1974.

25

L. S. Shapley and M. Shubik. The assignment game i: The core. International Journal of game
theory, 1:111–130, 1971.

E. Sperner. Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. 7. Vanden-
hoeck & Ruprecht, 1928.

W. Stromquist. How to cut a cake fairly. The American Mathematical Monthly, 87(8):640–644,
1980.

F. E. Su. Rental harmony: Sperner’s lemma in fair division. The American mathematical
monthly, 106(10):930–942, 1999.

L.-G. Svensson. Competitive equilibria with indivisible goods. Zeitschrift für Na-
tionalökonomie/Journal of Economics, 44(4):373–386, 1984.

26

	Introduction
	The Housing Market and Rainbow-KKM problems
	The housing market
	The KKM and RainbowKKM problems
	Sparse KKM coverings

	Reductions between HousingMarket and RainbowKKM
	Connecting the domains of HousingMarket and RainbowKKM
	The computational equivalence

	PPAD-Hardness of HousingMarket and RainbowKKM
	Reducing from the CakeCutting problem
	The reduction from the 2D-Sperner problem

	Membership of HousingMarket and RainbowKKM in PPAD
	Kuhn's triangulation
	The Sperner problem
	The reduction from RainbowKKM to Sperner

	Conclusion

